To generalize the assessment of the project outcomes to the wide landscape of emerging low energy customized and heterogeneous platforms, ALOHA will be tested considering two main platforms as reference:
a) STMicroelectronics Orlando: a low-power IoT end-nodes integrating specialized hardware blocks for specific compute-intensive data processing
G. Desoli/et al/., "14.1 A 2.9TOPS/W deep convolutional neural network SoC in FD-SOI 28nm for intelligent embedded systems", 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 238-239. doi: 10.1109/ISSCC.2017.7870349
b) NEURAghe: a zynq-based heterogeneous architecture accelerating convolutional neural networks
P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi, L. Raffo, L. Benini, "NEURAghe: Exploiting CPU-FPGA Synergies for Efficient and Flexible CNN Inference Acceleration on Zynq SoCs", 2017, https://arxiv.org/abs/1712.00994